3. Lineare Abbildungen

3.1. Abbildungsmatrizen

1. Beispiel

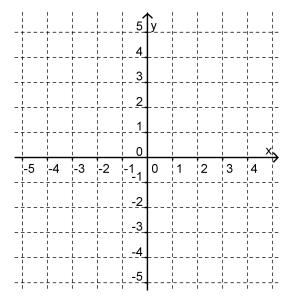
Wir betrachten die lineare Abbildung mit den Gleichungen

$$\bar{x} = 2x - y$$

$$\bar{y} = x + 3y.$$

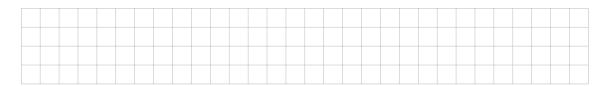
- a) Bestimme das Bild des Einheitsquadrats.
- b) Bestimme das Bild des Ortsvektors

$$\vec{p} = \begin{pmatrix} -2\\1 \end{pmatrix}$$



2. Die Abbildungsmatrix

Damit wir nicht für jede Abbildung die Gleichungen ausschreiben müssen, empfiehlt sich die Matrixschreibweise. Für die obige Abbildung notieren wir die Abbildungsmatrix



3. Von der Abbildung zur Matrix

Welche Matrizen gehören zu den folgenden Abbildungen?

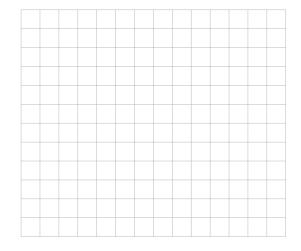
- a) Spiegelung an der x-Achse.
- b) Zentrische Streckung mit Faktor 7 vom Koordinatenursprung aus.

Übrigens betrachten wir nur Abbildungen, bei denen der Koordinatenursprung fest bleibt. Parallelverschiebungen (beispielsweise) gehören hier nicht dazu.

4. Von der Matrix zur Abbildung

Beschreibe die Abbildungen möglichst genau.

- a) $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
- b) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- c) $\begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$
- d) $\begin{pmatrix} 0.6 & -0.8 \\ 0.8 & 0.6 \end{pmatrix}$



5. Einheitspunkte

Eine Abbildung wird beschrieben durch $\begin{pmatrix} -1 & 3 \\ 4 & 7 \end{pmatrix}$.

Bestimme die Bildpunkte der Einheitspunkte $(1 \mid 0)$ und $(0 \mid 1)$. Was fällt auf?

6. Satz

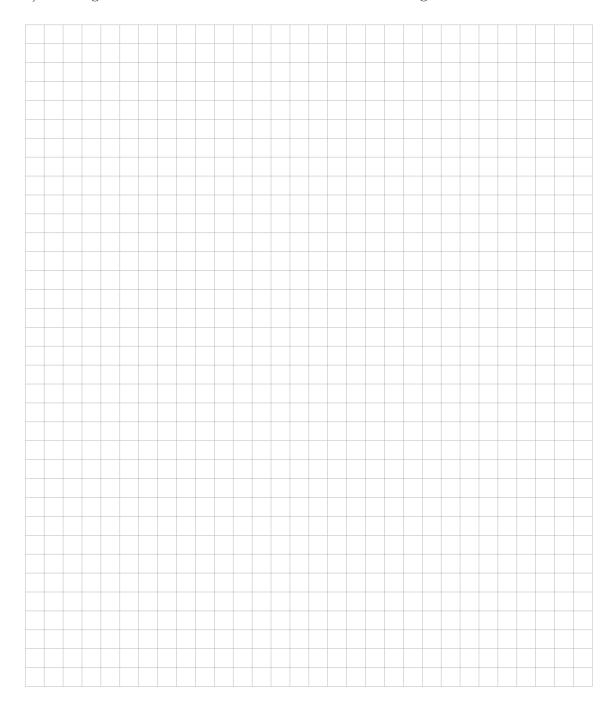
7. Bildpunkte

Eine Abbildung wird beschrieben durch $\begin{pmatrix} -1 & 3 \\ 4 & 7 \end{pmatrix}$. Bestimme die Bildpunkte von (5|8) und (-2|7).

8. Drehungen

Das Drehzentrum ist immer der Koordinatenursprung ($0 \mid 0$) .

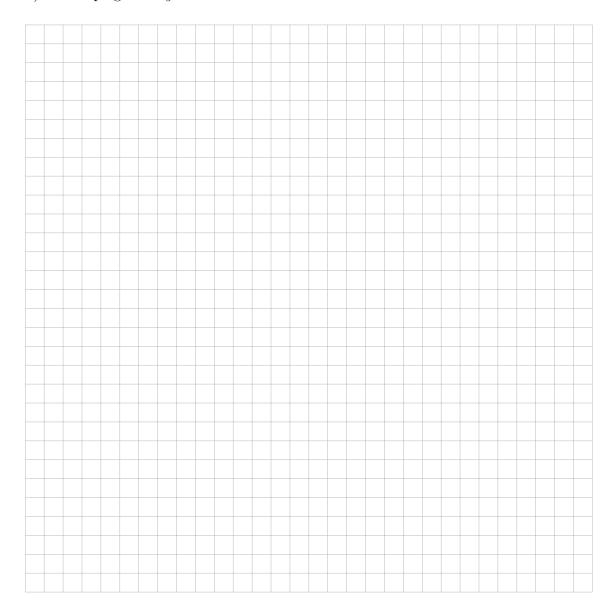
- a) Bestimme die Matrix der Drehung mit Winkel 90° .
- b) Welches ist die Matrix zur Drehung mit $\alpha = 60^{\circ}$?
- c) Verallgemeinere: Bestimme die Drehmatrix für beliebige Drehwinkel α .



9. Geradenspiegelungen

Die Spiegelungsachse geht immer durch den Koordinatenursprung ($0 \mid 0$) .

- a) Man spiegelt an y = -x. Wie lautet die Matrix?
- b) Man spiegelt an y = 2x. Wie lautet die Matrix?



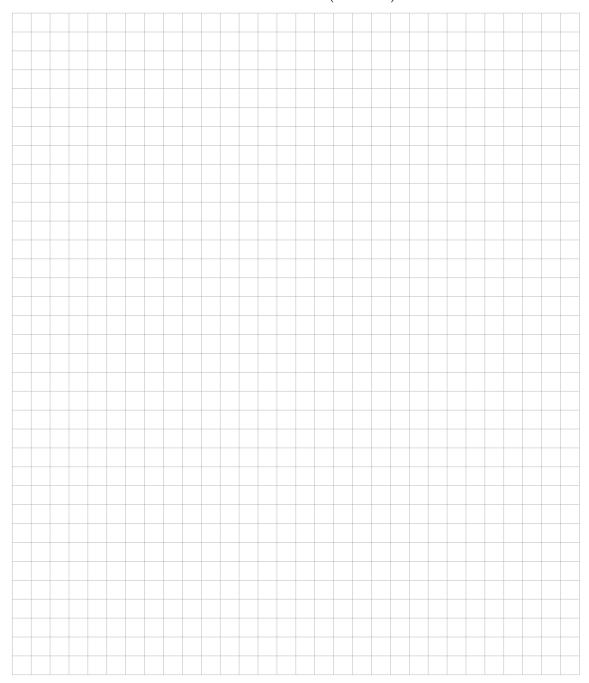
Übung

Bestimme die Matrix der Spiegelung an der Geraden $y = \frac{1}{7}x$.

$10. \ {\bf Drehstreckungen}$

Das Zentrum ist immer der Koordinatenursprung ($0 \mid 0$) .

- a) Man hat eine Drehstreckung mit Winkel 90° und Streckungsfaktor 2. Bestimme die zugehörige Matrix.
- b) Welche Drehstreckung gehört zur Matrix $\begin{pmatrix} -4 & -4 \\ 4 & -4 \end{pmatrix}$?
- c) Welche Drehstreckung gehört zur Matrix $\begin{pmatrix} 7 & -24 \\ 24 & 7 \end{pmatrix}$?



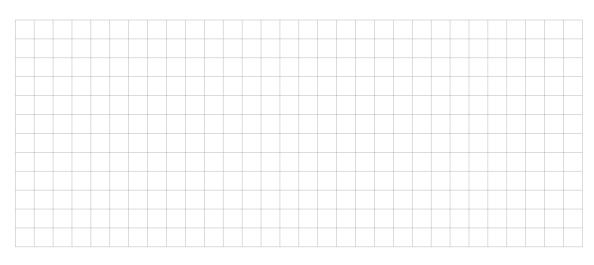
3.2. Zusammensetzen von Abbildungen

1. Überlegungsaufgabe

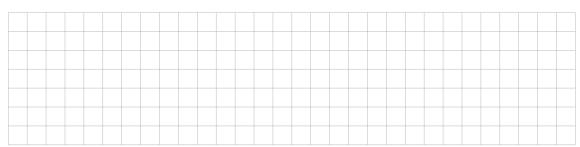
Zwei Abbildungen sind durch ihre Matrizen gegeben:

Abbildung 1 hat die Matrix $\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$, Abbildung 2 hat die Matrix $\begin{pmatrix} -2 & 1 \\ 5 & -3 \end{pmatrix}$. Welche Matrix beschreibt die Abbildung, die entsteht, wenn man zunächst Abbildung

1, danach Abbildung 2 durchführt?



2. Satz



3. Drehstreckung

Eine Drehstreckung kann man (logischerweise) aus einer Drehung und einer Streckung zusammensetzen. Bestimme so die allgemeine Matrix einer Drehstreckung.

4. Zwei Drehungen

Die erste Abbildung ist eine Drehung mit Drehwinkel α , die zweite Abbildung ist eine Drehung mit Winkel β . Bestimme die Matrix der Zusammensetzung. Aus dieser Herleitung folgert man die Formeln für $\cos(\alpha + \beta)$ und ähnliche.

Lernkontrolle

Man führt folgende zwei Abbildungen hintereinander aus:

Abbildung 1: Spiegelung an der x-Achse.

Abbildung 2: Spiegelung an der Geraden y = 2x.

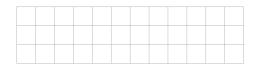
Was ist die Zusammensetzung?

3.3. Eigenwerte und Eigenvektoren

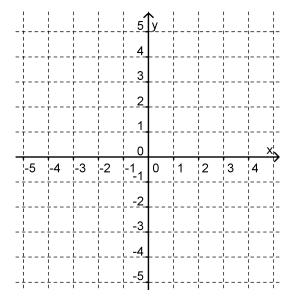
1. Beispiel

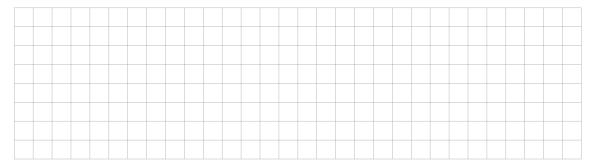
Eine lineare Abbildung wird beschrieben durch die Matrix $\begin{pmatrix} 0.9 & -0.2 \\ -0.2 & 0.6 \end{pmatrix}$.

a) Bestimme die Bilder der Punkte A (2 | 4) und B (2 | -1).



- b) Beschreibe diese Abbildung.
- c) Gibt es noch weitere Ortsvektoren, die auf ein Vielfaches von sich abgebildet werden?





$2. \quad \textbf{Eigenwerte, Eigenvektoren} \\$

Wir suchen zu einer gegebenen Matrix die
jenigen Vektoren, welche auf ein t-faches von sich selber abgebildet werden.

Solche Vektoren nennt man **Eigenvektoren**, die zugehörigen Werte t nennt man **Eigenwerte**.

3. Musterbeispiel

Bestimme die Eigenwerte und die Eigenvektoren von $M = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$.

4. Übungen

Bestimme die Eigenwerte und Eigenvektoren und beschreibe, sofern möglich, die Abbildung.

- a) $\begin{pmatrix} 0.7 & 0.6 \\ 0.6 & -0.2 \end{pmatrix}$
- b) $\begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$
- c) $\begin{pmatrix} 2 & 1 \\ 5 & 2 \end{pmatrix}$

Aus einer Prüfung

Bestimme die Eigenwerte und Eigenvektoren: $\begin{pmatrix} 2 \cdot \sqrt{3} & 3 \cdot \sqrt{2} \\ \sqrt{2} & 3 \cdot \sqrt{3} \end{pmatrix}$.