Lösung Matura 6B und 6E (2011)

Aufgabe 1a)

Definiere die Funktion.	F1770) F27 F37 F47 Algebra Calc Other	F5 PrgmIO Clean Up
Nullstelle (0 0)	■ Define y1(x)=5·x·e ^{-x}	Done
Maximum $(1 5 \cdot e^{-1}) = (1 1.839)$.	■ zeros(y1(x),x)	(0)
$ \mathbf{viaximum} (1 \mathbf{J} \cdot \mathbf{C} \mathbf{J} - (1 1.037). $	■ zeros $\left(\frac{d}{dx}(y1(x)), x\right)$	(1)
	■ y1(1)	5·e ⁻¹
	• g1(1)	1.8394
	y1(1) MAIN RAD AUTO	FUNC 5/30
Wendepunkt $(2 \mid 10 \cdot e^{-2}) = (2 \mid 1.353)$	■ zeros $\left(\frac{d^2}{dx^2}(y1(x)), x\right)$	(2)
	■ y1(2)	10·e ^{−2}
	• y1(2)	1.35335
	91(2) MAIN RAD AUTO	FUNC 8/30

Aufgabe 1b)

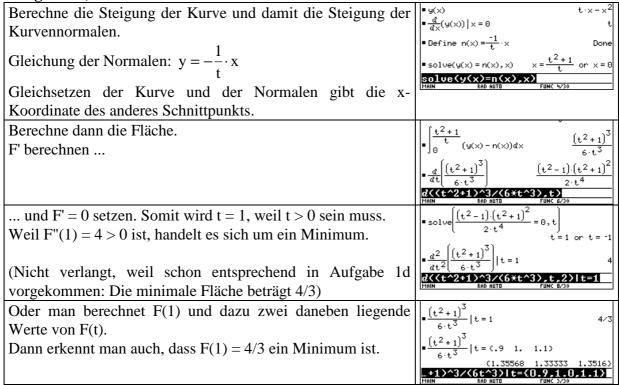
Rotationsvolumen	$= \pi \cdot \int_0^\infty ((y1(x))^2) dx$	$\frac{25 \cdot \pi}{4}$
1 V = -10.625	10/4	9.635
$\sqrt{-\frac{1}{4}} = 19.033$	π¥∫(y1(x)^2,x,0,∞) MAIN RAD AUTO FUNC10/30	

Aufgabe 1c)

Transpare 10)	
Den Wendepunkt hat man schon: $(2 \mid 10 \cdot e^{-2}) = (2 \mid 1.353)$	
Steigung der Wendetangente: $m = -5 \cdot e^{-2} = -0.677$ y-Achsenabschnitt: $v = 20 \cdot e^{-2} = 2.707$	$\frac{d}{dx}(y1(x)) x = 2$ \(-676676\) $= solve(10 \cdot e^{-2} = -5 \cdot e^{-2} \cdot 2 + v, v) \\ v = 20 \cdot e^{-2}$
y-Achsenaoschintt: $V = 20 \cdot e^{-} = 2.707$	e(10*e^(-2)=-5*e^(-2)*2+u,u)
Wendetangente: $y = -5 \cdot e^{-2} \cdot x + 20 \cdot e^{-2}$	solve $(10 \cdot e^{-2} = -5 \cdot e^{-2} \cdot 2 + v, v)$ v = 2.70671
Nullstelle der Wendetangente: $x = 4$.	■ Define $y2(x) = -5 \cdot e^{-2} \cdot x + 20 \cdot e^{-2}$ Done ■ solve($y2(x) = 0, x$) $x = 4$
Fläche des Dreiecks: $40 \cdot e^{-2} = 5.413$	■ 1/2·4·v v = 20·e ⁻² 40·e ⁻²
	■ $1/2 \cdot 4 \cdot 0 \mid 0 = 20 \cdot e^{-2}$ 5.41341 $1/2 \times 4 \times 0 \mid 0 = 20 \times e^{-2}$
	MAIN RAD AUTO FUNC 18/30

Aufgabe 1d)

nuigabe 1u)	
Höhe des Kegels: x , Bodenradius des Kegels: $y_1(x)$	■ 1/3·π·(y1(x))²·x
Alles in die Volumenformel einsetzen.	$= \frac{d}{dx} \left[1/3 \cdot \pi \cdot (y1(x))^2 \cdot x \right]$
V' berechnen.	$= 1/3 \cdot \pi \cdot (91(x))^2 \cdot x$ $= \frac{d}{dx} \left(1/3 \cdot \pi \cdot (91(x))^2 \cdot x \right)$ $\left[25 \cdot \pi \cdot x^2 - \frac{50 \cdot \pi \cdot x^3}{3} \right] \cdot e^{-2 \cdot x}$
	d(1/3*π*(91(x))^2*x,x) MAIN RAD AUTO FUNC 27/30
V' = 0, folglich $x = 3/2$.	■ solve $\left(\left(25 \cdot \pi \cdot x^2 - \frac{50 \cdot \pi \cdot x^3}{3} \right) \cdot e^{-2 \cdot x} = 0, x \right)$ x = 3/2 or x = 0
$y\left(\frac{3}{2}\right) = \frac{15 \cdot e^{-\frac{3}{2}}}{2}$, somit $P\left(\frac{3}{2} \mid \frac{15 \cdot e^{-\frac{3}{2}}}{2}\right) = P(1.5 \mid 1.673)$	$x = 3/2 \text{ or } x = 0$ $y_1(3/2) \qquad \frac{15 \cdot e^{-3/2}}{2}$
	■ 91(3/2) 1.67348 91(3/2) MAIN RAD AUTO FUNC 30/30
Maximales Volumen: $V_{\text{max}} = \frac{225 \cdot e^{-3} \cdot \pi}{8} = 4.399$	■ $1/3 \cdot \pi \cdot (91(x))^2 \cdot x \mid x = 3/2$ $\frac{225 \cdot e^{-3} \cdot \pi}{8}$ ■ $1/3 \cdot \pi \cdot (91(x))^2 \cdot x \mid x = 3/2$ 4.39905
8	
	1/3*π*(y1(x))^2*x x=3/2 MAIN RAD AUTO FUNC 30/30


Aufgabe 2a)

Definiere die Funktion.	Algebra Calc Other Promio Clean Up
Setze $y(x) = x$ für die Schnittpunkte = Integrationsgrenzen.	■ Define $y(x) = t \cdot x - x^2$ Done ■ solve $(t \cdot x - x^2 = x, x)$ $x = t - 1$ or $x = 0$
D -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 = 1	10
	■ solve $\left(\frac{(t-1)^3}{6} = 36, t\right)$ $t = 7$
	solve((t-1)^3/6=36,t) MAIN RAD AUTO FUNC 4/30

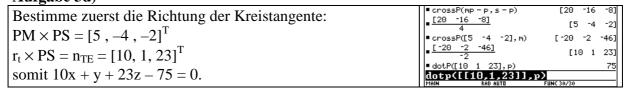
Aufgabe 2b)

Bestimme die Nullstellen: (0 0) und (t 0)	solve($y(x) = 0, x$) solve($y(x) = x^2, x$)	x=t or x=0 t.
Schnittpunkte: $(0 \mid 0)$ und $(t/2 \mid)$		$x = \frac{1}{2}$ or $x = 0$
[Der y-Wert des zweiten Schnittpunkts ist bedeutungslos.]	•∫t 0 y(x)dx	6
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	∫(y(x),x,0,t) MAIN RAD AUTO	FUNC 7/30
Totalfläche: $F_1 + F_2 = \frac{t^3}{6}$		
Linke Teilfläche: $F_1 = \frac{t^3}{24}$	$ \begin{bmatrix} \frac{t}{2} \\ 0 \\ y(x) - x^2 \end{bmatrix} dx $ $ \begin{bmatrix} t^3 \\ -t^3 \\ 0 \end{bmatrix} $	t ³
Effice refindence $r_1 = 24$	<u>t</u> 3 - t3	±3
Die linke Teilfläche ist ¼ der Gesamtfläche.	t^3/6-t^3/24	FUNC 9/30
Das Verhältnis beträgt somit 1 : 3 (unabhängig von t).	KAD AUTU	1900 2120

Aufgabe 2c)

Aufgabe 3a)

Speichere die Punkte.	F1790 F27 F37 F47 F5 Algebra Calc Other Prgm	IO Clean Up
Bestimme die Richtungsvektoren von n und m.	■[7 5 0]÷s ■[3 -1 2]÷p	[7 5 0] [3 -1 2]
n ist der Normalenvektor auf die Ebene ε.	■[7 5 0] → s ■[3 -1 2] → p ■[2 2 1] → n ■p-s→m	[7 5 0] [3 -1 2] [2 2 1] [-4 -6 2]
(Im Text stehen die Vektorpfeile nie.)	$\bullet \left(\cos^4 \left(\frac{\text{dotP}(m,n)}{\text{norm}(m) \cdot \text{norm}(n)} \right) \right) \bullet \text{DD}$	143.301°
In die Formel einsetzen, ergibt $\alpha = 36.699^{\circ}$	■ 180 - 143.301	36.699
m 010 1 0111101 011101011, 018101 0V 0010)	180-143.301 MAIN RAD AUTO FUN	C 6/30


Aufgabe 3b)

Schneide h mit ϵ : Startpunkt S, Richtung n. $M(3 \mid 1 \mid -2)$	■ s+t·n [2·t+7 2·t+5 t] ■ solve(2·(2·t+7)+2·(2·t+5)+t-6=0,t) t=-2 ■ [2·t+7 2·t+5 t] t=-2 [3 1 -2] ■ [3 1 -2] → mp [3 1 -2] ans(1)→mp MMN RAD AUTO FUNC10/20
MP ist der Radius $r=2\cdot\sqrt{5}=4.472$ MS ist Höhe des Kegels $h=6$. Alles in die Volumenformel einsetzen. $V=40\cdot\pi=125.664$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

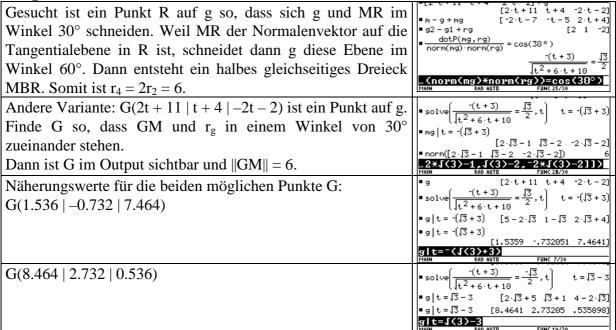
Aufgabe 3c)

ridigabe be)	
Speichere Q.	■[5 3 -4] → q [5 3 -4] ■s+t·(q-s) [7-2·t 5-2·t -4·t]
Bilde die Gerade SQ und schneide sie mit ε.	■[5 3 -4] + q [5 3 -4] ■ s + t·(q - s) [7 - 2·t 5 - 2·t -4·t] ■ solve(2·(7 - 2·t) + 2·(5 - 2·t) - 4·t - 6 = 0) t = 3/2 ■[7 - 2·t 5 - 2·t -4·t] t = 3/2
Der Schnittpunkt sei B, dann ist B(4 2 -6).	[4 2 -6]
	■[4 2 -6] → b [4 2 -6]
	MAIN RAD AUTO FUNC 20/30
QS < BS , somit liegt Q zwischen S und B.	■ norm(q - s) 2.√6 ■ norm(b - s) 3.√6
Variante I: $ BM = 4.243$ ist kleiner als der Radius r.	■ norm(b - mp) 3·√2
Variante II: Der Winkel zwischen SM und SQ beträgt	norm(b - mp) 4.24264
` 6	$\boxed{ \begin{pmatrix} \frac{\text{dotP}(mp-s,q-s)}{\text{norm}(mp-s)\cdot\text{norm}(q-s)} \end{pmatrix}} DD$
35.26° und ist kleiner als α .	35.2644° s)/(norm(mp-s)*norm(q-s)))*d
	MAIN RAD AUTO FUNC 25/30

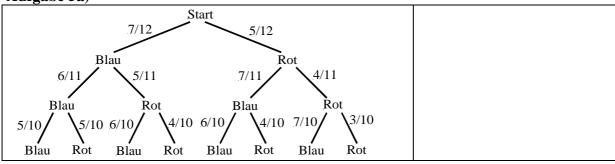
Aufgabe 3d)

Aufgabe 4a)

Quadratisches Ergänzen	Algebra Calc Other PromIO Clean Up
$M(4 \mid -1 \mid 2), r_1 = 2$	
Für den Ersatzwert gibt es ab hier die gleichen Resultate (das Ersatz-Zentrum liegt auf der anderen Seite von g).	


Aufgabe 4b)

B ist der Lotfusspunkt von M auf g.	■[4 -1 2] → m [4 -1 2] ■[11 4 -2] → g1 [11 4 -2]
Richtungsvektor von g: $r_g = [2, 1, -2]^T$ und	■[11 4 -2]+g1 [11 4 -2] ■[13 5 -4]+g2 [13 5 -4] ■g1+t·(g2-g1) [2·t+11 t+4 -2·t-2]
somit die Normalebene auf g durch M.	9 2 - 91
NE: $2x + y - 2z - 3 = 0$.	■ dotP(g2 - g1, m) 3 dotp(g2-g1, m) MAIN RAD AUTO FUNC 7/30
Mit g schneiden, ergibt B.	$\frac{1}{2}$ solve(2·(2·t+11)+t+4-2·(-2·t-2)-3} t = -3
B(5 1 4)	■[2·t+11 t+4 -2·t-2] t=-3
$ \mathbf{r}_2 = \mathbf{MB} = 3$	[5 1 4] •[5 1 4] +b [5 1 4]
2 11 11 -	■ norm(b - m) 3 norm(b-m) MAIN RAD AUTO FUNC 11/30

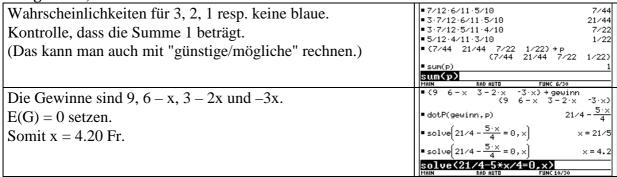

Aufgabe 4c)

B ist der Mittelpunkt der gesuchten Strecke. Weil $ \mathbf{r}_g = 3$,	■ norm(b - m) ■ norm(g2 - g1)	3
kann man rg in beide Richtungen an B anhängen und erhält P	■b+g2-g1	[7 2 2]
8	-0 (92 91)	[3 0 6]
und Q.	■norm([3 0 6]-m)	3.12
P(7 + 2 + 2) = O(3 + 0 + 6)	■norm([3 0 6]-m)	4.24264
P(7 2 2), Q(3 0 6)	norm([[3,0,6]]-m)	FUNC 16/30
$r_3 = 3 \cdot \sqrt{2} = 4.243$		
Andere Variante: $ MB = [1, 2, 2]^T = 3$.		
Dann erhält man r ₃ mit Pythagoras (MBP und MBQ sind Geo-		
Dreiecke) und kann g mit einer Kugel k3 um M mit Radius r3		
schneiden.		
Gleichung der Kugel k_3 : $(x-4)^2 + (y+1)^2 + (z-2)^2 = 18$.		

Aufgabe 4d)

Aufgabe 5a)

Aufgabe 5b)

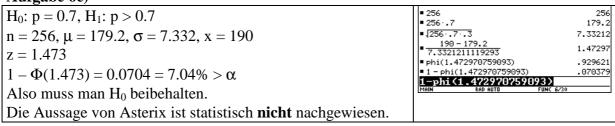

Dritte Kugel blau: jeder zweite Pfad. P(B) = 7/12F1770 F2▼ F3▼ F4▼ F5 F6▼ Up Zweite Kugel rot, wenn die dritte blau war: $P(A \mid B) = 5/11$ Die mittlere Linie zeigt $P(A \cap B) = 35/132$

6/11 - 5/10 + 7/12 - 5/11 - 6/10 + 5 ■ 7/12·5/11·6/10 + 5/12·4/11·7/10 35 132 5/11 (35/132)/(7/12)

Aufgabe 5c)

Speichere den Gewinn und die Wahrscheinlichkeiten. 0) → gewinn (99 00 ■ $\left\{ \frac{35}{132} - 1 - \frac{35}{132} \right\} \to P$ $\frac{97}{132}$ (Die 35/132 hat man aus Aufgabe b) 105 4 ■dotP(gewinn,p) E(G) = 26.25■ dotP(gewinn,p) dotp(gewinn,p) Also muss der Einsatz 26.25 Fr. betragen.

Aufgabe 5d)


Aufgabe 6a)

- a1) geordnet ohne Wiederholung: 360 a2) alle Wörter minus die ohne A: 671 a3) entweder zwei Buchstaben wählen, je doppelt,
- 360 ■6⁴-5⁴ oder einen dreifach, einen einfach: 210 Möglichkeiten ■ nCr(6,2)·4! + nCr(6,1)·nCr(5,1)· ..))+ncr(6,1)*ncr(5,1)*(4!/3!)

Aufgabe 6b)

The de h 20 sammers, emait are farsemen 75.0170 far	$ \begin{array}{c} = \sum\limits_{x=21}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot (.7)^{x} \cdot (.3)^{30-x} \right) \\ = \sum\limits_{x=20}^{30} \left(\text{nCr}(30, x) \cdot (.7)^{x} \cdot $
b2) Gegenteil: n = 8.4 Also sind mindestens 9 Spiele nötig.	■ solve(1-(.7) ⁿ = .95, n) n = 8.39985 solve(1-0.7^n=0.95,n) MAIN RAD AUTO FUNC 1/30

Aufgabe 6c)

