4. Berechnungen am beliebigen Dreieck

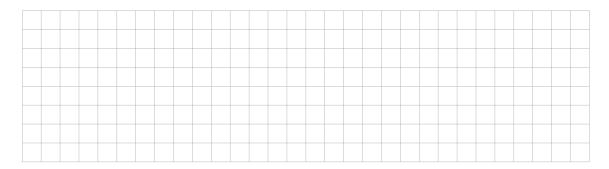
4.1. Der Sinus-Satz

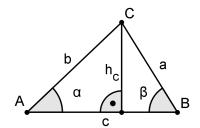
1. Beispiel

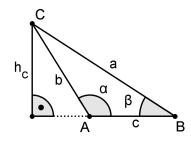
Von einem Dreieck kennt man die Seiten $a=4\,\mathrm{cm},\,b=5\,\mathrm{cm}$ und den Winkel $\alpha=40^\circ$ Berechne den Winkel β .

2. Herleitung des Sinus-Satzes

Wir lösen diese Aufgabe allgemein. Betrachten vorerst das Dreieck in der Figur links.







3. Überlegungsaufgabe

Stimmt der Sinus-Satz auch, wenn das Dreieck stumpfwinklig ist?

4. Bemerkung

Wir hätten natürlich auch mit anderen Winkeln starten können, indem beispielsweise α und γ vorgegeben sind. Dann ist $\frac{a}{\sin(\alpha)} = \frac{c}{\sin(\gamma)}$

5.	Satz

6. Musterbeispiele

a) Jetzt kann man das Einstiegsbeispiel lösen: Von einem Dreieck kennt man die Seiten $a=4\,\mathrm{cm},\,b=5\,\mathrm{cm}$ und den Winkel $\alpha=40^\circ$ Berechne den Winkel β .

- b) Von einem Dreieck kennt man $a=5.43\,\mathrm{cm},\,\alpha=44^\circ$ und $\gamma=67^\circ$. Berechne c.
- c) Von einem Dreieck kennt man $a=5.43\,\mathrm{cm},\,c=8.31\,\mathrm{cm}$ und $\gamma=67^\circ.$ Berechne $\alpha.$

$\ddot{\mathbf{U}}\mathbf{bung}$

Von einem Dreieck kennt man alle Winkel: 45°, 55° und 80°. Weiter

kennt man die längste Seite: 8 cm. Wie lang sind die anderen Seiten?

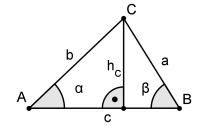
4.2. Der Cosinus-Satz

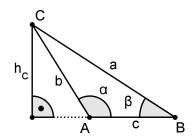
1. Beispiel

Von einem Dreieck kennt man die Seiten $c=4\,\mathrm{cm},\,b=5\,\mathrm{cm}$ und den Winkel $\alpha=70^\circ.$ Berechne die Seite a.

2. Herleitung, erster Teil

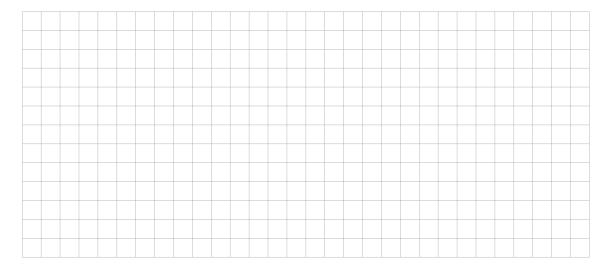
Offensichtlich ist der Sinus-Satz nicht verwendbar.





3. Herleitung, zweiter Teil

Was passiert, wenn $\alpha > 90^{\circ}$?



Auch für den Cosinus-Satz kann man mit einem anderen Winkel starten.

4. Satz

.....

5. Bemerkung

Man überlege sich, was der Cosinus-Satz besagt, wenn $\gamma=90^\circ$ ist.

.....

6. Zweite Form des Cosinus-Satzes

Die Gleichungen aus dem Cosinus-Satz kann man nach $\cos(\alpha)$ und entsprechend mit den andern Winkel auflösen.

7. Musterbeispiele

- a) Jetzt ist das Eingangsbeispiel lösbar: Von einem Dreieck kennt man die Seiten $c=4\,\mathrm{cm},\,b=5\,\mathrm{cm}$ und den Winkel $\alpha=70^\circ.$ Berechne die Seite a.
- b) Von einem Dreieck kennt man $a=4\,\mathrm{cm},\,b=6\,\mathrm{cm},\,c=7\,\mathrm{cm}.$ Berechne $\alpha.$

Übung

Man kennt $a=4\,\mathrm{cm},\,b=5\,\mathrm{cm},\,\gamma=108^\circ.$ Berechne c.

4.3. Grundaufgaben

1. Bemerkung I

Von einem Dreieck sind drei sogenannte Aussenstück (Seiten oder Winkel) gegeben. Dann sind die anderen drei berechenbar. Es sind einige Fälle zu unterscheiden:

.....

2. Bemerkung II

Wann	b	end	öti	gt	m	a	n :	fü	r	di	ie	В	Be:	re	cł	ır	ıu	ng	ge	en	d	leı	1	Si	n	us	S-S	Sa	tz	,	W	ar	n	C	le	n	(Co	si	n	us	S-1	Sa	at:	z?)
									•			•							•		٠.	•		٠.	•			•						•				•				•			•	
			٠.									•							•						•													•						٠.		

3. Grundaufgabe A

Gegeben sind alle Seiten eines Dreiecks.

.....

4. Beispiele

- a) a = 3 cm, b = 5 cm, c = 9 cm.
- b) a = 3 cm, b = 5 cm, c = 7 cm.

5. Grundaufgabe B

Gegeben sind zwei Seiten und der eingeschlossene Winkel.

Lċ	ÖS	ur	1g	SS	st:	ra	t	99	ςiε	en	1:								•	 •	•		 •	•										 •			•			•		•		
	٠.																								•					•		 •			 •								•	
													•	•		•	 •	•		•						•	 •	•	 •	•			•						•		•			
																									•					•		 •			 •								•	

6. Beispiel

 $a = 1 \,\text{cm}, b = 4 \,\text{cm}, \gamma = 60^{\circ}.$

7. Bemerkung

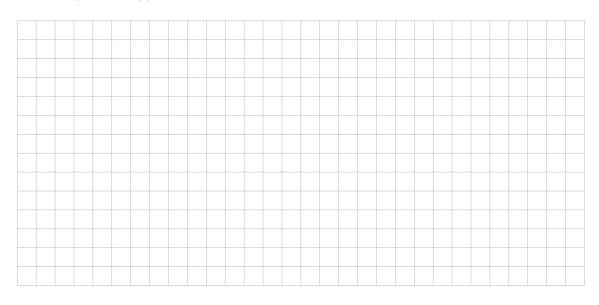
Wann muss man bei Berechnungen mit Sinus-Satz oder Cosinus-Satz aufpassen?	

8. Grundaufgaben C und D

Gegeben sind eine Seite und zwei Winkel.

9. Beispiel

 $c = 2 \,\mathrm{cm}, \ \alpha = 40^{\circ}, \ \beta = 65^{\circ}.$



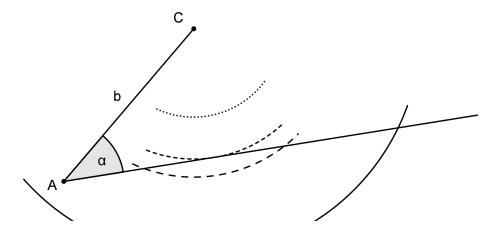
10. Grundaufgabe E

Gegeben sind zwei Seiten und ein Winkel, aber nicht der eingeschlossene.

Lösungsstrategie:

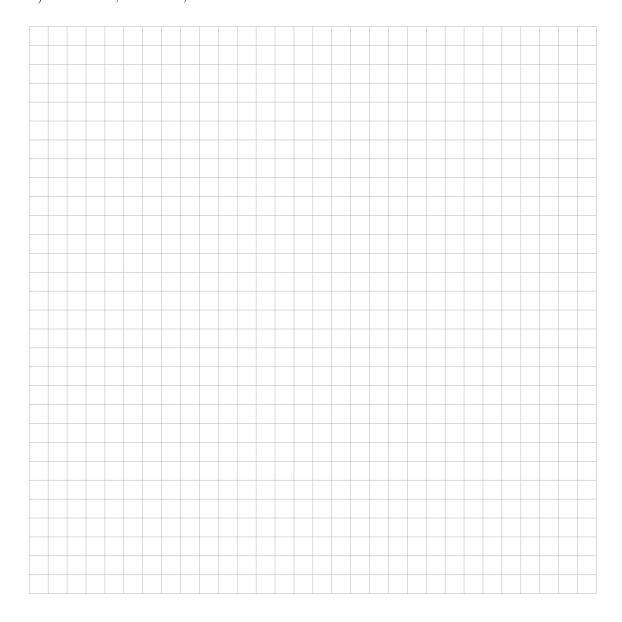
Wir betrachten nochmals die Konstruktion.

Gegeben seien die Seite b, der Winkel α und die Seite a.



11. Beispiele

- a) $a = 6 \text{ cm}, b = 4 \text{ cm}, \alpha = 40^{\circ}.$
- b) $a = 7 \,\text{cm}, b = 10 \,\text{cm}, \alpha = 38^{\circ}.$
- c) $a = 4 \text{ cm}, b = 8 \text{ cm}, \alpha = 30^{\circ}.$
- d) $a = 5 \text{ cm}, b = 9 \text{ cm}, \alpha = 36^{\circ}.$



Übung

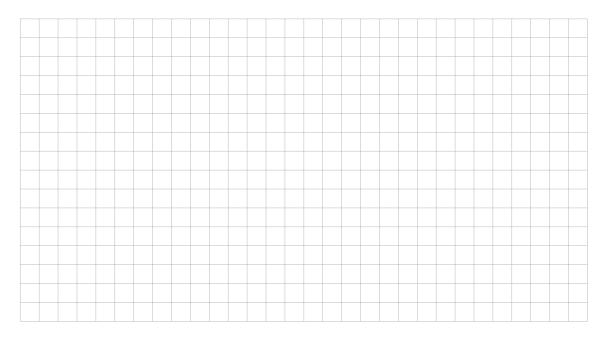
- a) $a = 34.5 \,\mathrm{cm}, \, \alpha = 55.5^{\circ}, \, \beta = 66.6^{\circ}.$
- b) a = 4 cm, b = 7 cm, c = 9 cm.
- c) $a = 8.76 \,\mathrm{cm}, c = 5.43 \,\mathrm{cm}, \beta = 66.6^{\circ}.$

4.4. Anwendungen

1. Drachenviereck

Von einem Drachen kennt man alle Seiten: 7 cm, 7 cm, 12 cm, 12 cm und eine (welche?!) Diagonale 15 cm.

Berechne alle Innenwinkel.



2. Dreieck

Von einem Dreieck kennt man die Seite $c=9\,\mathrm{cm},$ die Höhe $h_b=5\,\mathrm{cm}$ sowie den Winkel $\gamma=70^\circ.$

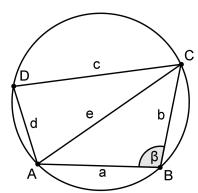
Berechne die Fläche dieses Dreiecks.

3. Zwei Kreise

Die Zentren zweier Kreise haben einen Abstand von $12\,\mathrm{cm}$. Die zur gemeinsamen Sehne gehörenden Zentriwinkel betragen 72° resp. 130° . Berechne die Kreisradien.

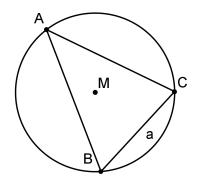
$\ddot{\mathbf{U}}\mathbf{bung}$

Von einem Sehnenviereck (siehe die Figur) kennt man a=5, c=4.3, e=5.4 und $\beta=94^{\circ}$. Bestimme die fehlenden Seiten und Winkel.



4. Umkreis

Welche Bedeutung hat das konstante Verhältnis $\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$?



5. Beispiel

Von einem Dreieck kennt man die Seite $a=6\,\mathrm{cm},$ den Winkel $\gamma=70^\circ$ und den Umkreisradius $r=4\,\mathrm{cm}.$

Berechne die anderen Seiten dieses Dreiecks.

$\ddot{\mathbf{U}}\mathbf{bung}$

(Fortsetzung der Übung auf der vorhergehenden Seite.)

Berechne den Umkreisradius des Sehnenvierecks.